Scientists have heralded a “whole new era” in physics with the detection of “primordial gravitational waves” — the first tremors of the big bang.
The minuscule ripples in space-time are the last prediction of Albert
Einstein’s 1916 general theory of relativity to be verified. Until now,
there has only been circumstantial evidence of their existence. The
discovery also provides a deep connection between general relativity and
quantum mechanics, another central pillar of physics.
“This is a genuine breakthrough,” says Dr Andrew Pontzen, a cosmologist
from University College London who was not involved in the work. “It
represents a whole new era in cosmology and physics as well.” If the
discovery is confirmed, it will almost certainly lead to a Nobel Prize.
The detection, which has yet to be published in a peer-reviewed
scientific journal, was announced on Monday at the Harvard-Smithsonian
Center for Astrophysics in Cambridge, Massachusetts, and comes from the
Background Imaging of Cosmic Extragalactic Polarization 2 (Bicep2)
experiment — a telescope at the South Pole.
The detection also provides the first direct evidence for a long-held
hypothesis called inflation. This states that a fraction of a second
after the Big Bang, the universe was driven to expand hugely. Without
this sudden growth spurt, the gravitational waves would not have been
amplified enough to be visible.
“Detecting this signal is one of the most important goals in cosmology
today. A lot of work by a lot of people has led up to this point,” said
Dr John Kovac of the Harvard-Smithsonian Center for Astrophysics, who
leads the BICEP2 collaboration.
The primordial gravitational waves were visible because they created a
twisting pattern called polarisation in light from the Big Bang.
Polarisation is the direction in which a light wave oscillates. It is
invisible to human eyes, which only register brightness and colour.
Sunglasses made from polaroid sheets work by blocking out all light
waves except those with a specific polarisation.
Light from the Big Bang has been turned into microwaves by its passage
across space. These microwaves were discovered in 1964 and are known as
the cosmic microwave background radiation. Bicep2 was designed to
measure their polarisation.
Rumours began last Friday that the detection of primordial gravitational
waves would be announced. It had been thought that a gravitational wave
signal would have to be surprisingly strong to be detected by the
current technology used in ground-based detectors.
The Bicep2 team have spent three years analysing the signal in order to
be certain. “This has been like looking for a needle in a haystack, but
instead we found a crowbar,” said co-leader Dr Clem Pryke of the
University of Minnesota.
Nevertheless, the signal will have to be confirmed. “I think a lot of
people will be looking very critically at this,” said Dr Pontzen.
Confirmation could come as early as August. The European Space Agency’s
Planck satellite has been looking for this same signal and is due to
announce its findings.
Whereas Bicep2 has only looked at part of the sky visible from the south pole, Planck has mapped the whole sky.
If it confirms the signal and its strength then cosmologists will be
presented with an extraordinarily rich seam of data about the conditions
immediately after the Big Bang. “We are going to be able to measure all
sorts of subtle details to start pinning down how physics operates in
those utterly extreme conditions,” said Dr Pontzen.
This could reveal the interface between the two great theories of
physics: general relativity and quantum mechanics. Despite almost a
century of effort, the world’s physicists have not been able to show how
these theories work together. The primordial gravitational waves that
produced the signal seen by Bicep2 were produced in interactions that
took place at a trillion times the energies that can be produced in the
Large Hadron Collider at Cern.
“This is like turning the whole universe into a particle physics
experiment,” said Dr Hiranya Peiris, a cosmologist from University
College London.
It could even show them the way to join the two theories together,
producing what is sometimes called “the theory of everything”.
“Gravitational waves emitted at the time of the Big Bang can tell us how
the universe came to exist,” said Dr Ed Daw, an astronomer at the
University of Sheffield. “If these results prove correct, we will have
new key information on the very early universe, information that is hard
to get from any other source.
“Gravitational waves are a new frontier in astrophysics and cosmology.
If today’s (Monday’s) findings are accurate then it will further
strengthen our understanding of how the universe formed.”
© Guardian
News & Media 2014